Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 451
Filtrar
1.
Nat Prod Res ; 38(9): 1591-1598, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38573587

RESUMO

Three new pterosins, named as semipterosin A (1), B (2) and C (3), together with 11 known pterosins (4-14), were isolated from the aerial parts of Pteris semipinnata. Their structures were elucidated by HRESI-MS, NMR spectral data, CD and literature comparisons. Three new pterosins were assessed for their anti-inflammatory activity. Compounds 1-3 inhibited the NF-kB induction by 40.7%, 61.9% and 34.0%, respectively. This is the first report of the isolation of compounds 6-14 from this plant.


Assuntos
Pteris , Sesquiterpenos , Indanos , NF-kappa B
2.
Sci Total Environ ; 926: 171922, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38522532

RESUMO

The first-known As-hyperaccumulator Pteris vittata is efficient in As uptake and translocation, which can be used for phytoremediation of As-contaminated soils. However, the underlying mechanisms of As-enhanced plant growth are unknown. We used untargeted metabolomics to investigate the potential metabolites and associated metabolic pathways regulating As-enhanced plant growth in P. vittata. After 60 days of growth in an MS-agar medium containing 15 mg kg-1 As, P. vittata biomass was 33-34 % greater than the no-As control. Similarly, the As contents in P. vittata roots and fronds were 272 and 1300 mg kg-1, considerably greater than the no-As control. Univariate and multivariate analyses based on electrospray ionization indicate that As exposure changed the expression of 1604 and 1248 metabolites in positive and negative modes. By comparing with the no-As control, As exposure significantly changed the expression of 14 metabolites including abscisic acid, d-glucose, raffinose, stachyose, chitobiose, xylitol, gibberellic acids, castasterone, citric acid, riboflavin-5-phosphate, ubiquinone, ubiquinol, UDP-glucose, and GDP-glucose. These metabolites are involved in phytohormone synthesis, energy metabolism, and sugar metabolism and may all potentially contribute to regulating As-enhanced plant growth in P. vittata. Our data provide clues to understanding the metabolic regulations of As-enhanced plant growth in P. vittata, which helps to enhance its phytoremediation efficiency of As-contaminated soils.


Assuntos
Arsênio , Pteris , Poluentes do Solo , Arsênio/análise , Pteris/metabolismo , Poluentes do Solo/análise , Biodegradação Ambiental , Raízes de Plantas/metabolismo , Solo , Glucose/metabolismo
3.
Chemosphere ; 352: 141389, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38336043

RESUMO

Biochar (BC) has a strong potential for activating arsenic (As) in soil; thus, the phytoremediation efficiency of As-polluted soils is enhanced with Pteris vittata L. A pot experiment was conducted to investigate the potential of BC to assist in phytoremediation with P. vittata. The effects of BC on physicochemical properties, available As, enzyme activities, and the bacterial community in the rhizosphere soil were investigated, and the biomass, physiology, and As uptake of P. vittata were analyzed. The results indicated that applying BC facilitated available As in the P. vittata rhizosphere soil, and the phytoremediation efficiency percentage increased in the As-polluted soils, such as 3.80% and 8.01% under the 2% and 5% BC treatments compared to the control, respectively. Phytoremediation with P. vittata and BC significantly improved soil organic matter content, available N, P, and K, enzyme activities, and the bacterial community. BC promoted Streptomyces (26.6-54.2%) and Sphingomonas (12.3-30.8%) abundance which regulated the growth and As uptake by P. vittata. Moreover, applying BC increased the biomass, and As uptake by P. vittata. Overall, BC strengthened the phytoremediation of As-polluted soils by improving soil pH, nutrient concentrations, enzyme activities, bacterial community structure, and soil arsenic activation, growth, and absorption by P. vittata.


Assuntos
Arsênio , Carvão Vegetal , Pteris , Poluentes do Solo , Arsênio/análise , Solo/química , Poluentes do Solo/análise , Biodegradação Ambiental , Bactérias
4.
Environ Sci Technol ; 58(8): 3858-3868, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38356137

RESUMO

Phytate, the principal P storage in plant seeds, is also an important organic P in soils, but it is unavailable for plant uptake. However, the As-hyperaccumulator Pteris vittata can effectively utilize soluble Na-phytate, while its ability to utilize insoluble Ca/Fe-phytate is unclear. Here, we investigated phytate uptake and the underlying mechanisms based on the phytase activity, nutrient uptake, and expression of genes involved in As metabolisms. P. vittata plants were cultivated hydroponically in 0.2-strength Hoagland nutrient solution containing 50 µM As and 0.2 mM Na/Ca/Fe-phytate, with 0.2 mM soluble-P as the control. As the sole P source, all three phytates supported P. vittata growth, with its biomass being 3.2-4.1 g plant-1 and Ca/Fe-phytate being 19-29% more effective than Na-phytate. Phytate supplied soluble P to P. vittata probably via phytase hydrolysis, which was supported by 0.4-0.7 nmol P min-1 g-1 root fresh weight day-1 phytase activity in its root exudates, with 29-545 µM phytate-P being released into the growth media. Besides, compared to Na-phytate, Ca/Fe-phytate enhanced the As contents by 102-140% to 657-781 mg kg-1 in P. vittata roots and by 43-86% to 1109-1447 mg kg-1 in the fronds, which was accompanied by 21-108% increase in Ca and Fe uptake. The increased plant As is probably attributed to 1.3-2.6 fold upregulation of P transporters PvPht1;3/4 for root As uptake, and 1.8-4.3 fold upregulation of arsenite antiporters PvACR3/3;1/3;3 for As translocation to and As sequestration into the fronds. This is the first report to show that, besides soluble Na-phytate, P. vittata can also effectively utilize insoluble Ca/Fe-phytate as the sole P source, which sheds light onto improving its application in phytoremediation of As-contaminated sites.


Assuntos
6-Fitase , Arsênio , Pteris , Poluentes do Solo , 6-Fitase/metabolismo , Pteris/metabolismo , Ácido Fítico/metabolismo , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Biodegradação Ambiental
5.
Ecotoxicol Environ Saf ; 271: 115959, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38232527

RESUMO

The arsenic (As) release from litter decomposition of As-hyperaccumulator (Pteris vittata L.) in mine areas poses an ecological risk for metal dispersion into the soil. However, the effect of atmospheric nitrogen (N) deposition on the litter decomposition of As-hyperaccumulator in the tailing mine area remains poorly understood. In this study, we conducted a microcosm experiment to investigate the As release during the decomposition of P. vittata litter under four gradients of N addition (0, 5, 10, and 20 mg N g-1). The N10 treatment (10 mg N g-1) enhanced As release from P. vittata litter by 1.2-2.6 folds compared to control. Furthermore, Streptomyces, Pantoea, and Curtobacterium were found to primarily affect the As release during the litter decomposition process. Additionally, N addition decreased the soil pH, subsequently increased the microbial biomass, as well as hydrolase activities (NAG) which regulated N release. Thereby, N addition increased the As release from P. vittata litter and then transferred to the soil. Moreover, this process caused a transformation of non-labile As fractions into labile forms, resulting in an increase of available As concentration by 13.02-20.16% within the soil after a 90-day incubation period. Our findings provide valuable insights into assessing the ecological risk associated with As release from the decomposition of P. vittata litter towards the soil, particularly under elevated atmospheric N deposition.


Assuntos
Arsênio , Pteris , Poluentes do Solo , Biodegradação Ambiental , Pteris/química , Arsênio/análise , Poluentes do Solo/análise , Solo/química
6.
J Hazard Mater ; 466: 133579, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38290333

RESUMO

The introduction of arbuscular mycorrhizal fungi (AMF) is considered an effective strategy for improving the arsenic phytoremediation efficiency of Pteris vittata L. (P. vittata). However, how hyphae take up arsenic and translocate it to the root cells of P. vittata in the symbiotic mycorrhizal structure is currently unclear. In this study, the role of hyphae in arsenic enrichment in P. vittata and the mechanism of arsenic species transformation in the rhizosphere were studied via a compartmented cultivation setup. After Claroidoglomus etunicatum (C. etunicatum) colonization, the arsenic content of P. vittata increased by 234%. Hyphae contributed 32% to the accumulation of arsenic in symbionts. C. etunicatum promoted the conversion of iron and aluminum oxides to crystalline states in rhizosphere soil, promoted the desorption of arsenic bound to iron and aluminum oxides, and increased the content of available arsenic in rhizosphere soil by 116%. The transfer of arsenic from arbuscular structures to root cells was confirmed by transmission electron microscopy (TEM)/scanning electron microscopy- energy dispersive X-ray spectroscopy (SEMEDS) analysis. This study demonstrated that C. etunicatum inoculation enhances the phytoremediation efficiency of P. vittata in arsenic-contaminated soils through hyphal uptake, plant growth promotion, and alteration of the rhizosphere environment.


Assuntos
Arsênio , Micorrizas , Pteris , Poluentes do Solo , Micorrizas/metabolismo , Arsênio/metabolismo , Pteris/metabolismo , Hifas , Rizosfera , Solo/química , Alumínio/análise , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Ferro/metabolismo , Óxidos/metabolismo , Raízes de Plantas/metabolismo
7.
Sci Total Environ ; 915: 170074, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38218467

RESUMO

Soil contamination by multimetals is widespread. Hyperaccumulator-crop intercropping has been confirmed to be an effective method for arsenic (As)- or cadmium (Cd)-contaminated soil that can achieve soil cleanup and agricultural production. However, the influencing factors and response of hyperaccumulator-crop intercropping to multimetal-contaminated soil are still unclear. In this study, intercropping of the As hyperaccumulator Pteris vittata and maize was conducted on two typical types of multimetal-contaminated soil, namely, Soil A contaminated by As, Cd, and lead (Pb) and Soil B contaminated by As, Cd, and chromium (Cr). Intercropping reduced As, Cd, and Pb in the maize grains by 60 %, 66.7 %, and 20.4 %, respectively. The concentrations of As, Cd, Pb, and Cr in P. vittata increased by 314 %, 300 %, 447.3 %, and 232.6 %, respectively, relative to their concentrations in the monoculture plants. Two soils with different levels of contamination showed that higher heavy metal content might diminish the ability of intercropping to reduce soil heavy metal risk. No notable difference in soil microbial diversity was found between the intercropped and monocultured plants. The composition of microbial communities of intercropping groups were more similar to those of monoculture P. vittata on two different soils (Soils A and B). An imbalance between the amount of As taken up by the plants and the reduction in As in the soil was observed, and this imbalance may be related to watering, As leaching, and heterogeneity of soil As distribution. Reducing the risk resulting from As leaching and enhancing the efficiency of phytoextraction should be emphasized in remediation practices.


Assuntos
Arsênio , Metais Pesados , Pteris , Poluentes do Solo , Cádmio/análise , Zea mays , Chumbo , Biodegradação Ambiental , Poluentes do Solo/análise , Metais Pesados/análise , Arsênio/análise , Solo , Cromo
8.
Appl Biochem Biotechnol ; 196(2): 774-789, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37195566

RESUMO

Pteris vittata L. is a terrestrial genus growing in moist, shady forests and on hillsides. The plant has considerable ethnomedicinal importance. Investigations have been carried out on chemical profiling and antioxidant compounds from some genera of pteridophytes but studies on the biological properties of P. vittata are lacking. Therefore, the present study investigates antioxidant, antigenotoxic, and antiproliferative potential of the aqueous fraction of P. vittata (PWE). A battery of assays were carried out to assess the antioxidant potential of the PWE. SOS chromotest and DNA nicking assay were used to evaluate the antigenotoxicity of the fraction. The cytotoxic effect of PWE was analyzed using MTT and Neutral Single Cell Gel Electrophoresis comet assay. EC50 of 90.188 µg/ml, 80.13 µg/ml, 142.836 µg/ml, and 12.274 µg/ml was obtained in DPPH, superoxide anion scavenging, reducing power and lipid peroxidation assays, respectively. PWE was potent in inhibiting Fenton's reagent-induced nicking of pBR322 plasmid. The fraction significantly inhibited hydrogen peroxide (H2O2) and 4-nitroquinoline-N-oxide (4NQO) induced mutagenicity and a reduction in induction factor was found with increased PWE concentration. GI50 of 147.16 µg/ml was obtained in MTT assay in human MCF-7 breast cancer cell line. PWE induced apoptosis as confirmed from confocal microscopy studies. The protective effects can be attributed to the presence of the phytochemicals in PWE. These results will be helpful in the development of functional food characteristics, as well as unravel the benefits of pteridophytes as promoters of health.


Assuntos
Arsênio , Pteris , Poluentes do Solo , Humanos , Antioxidantes/química , Polifenóis/farmacologia , Polifenóis/análise , Polifenóis/metabolismo , Pteris/química , Pteris/metabolismo , Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo , China , Arsênio/metabolismo , Poluentes do Solo/metabolismo
9.
J Hazard Mater ; 460: 132463, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37690196

RESUMO

Pteris vittata, as the firstly discovered arsenic (As) hyperaccumulator, has great application value in As-contaminated soil remediation. Currently, the genes involved in As hyperaccumulation in P. vittata have been mined continuously, while they have not been used in practice to enhance phytoremediation efficiency. Aiming to better assist the practice of phytoremediation, this review collects 130 studies to clarify the progress in research into the As hyperaccumulation process in P. vittata from multiple perspectives. Antioxidant defense, rhizosphere activities, vacuolar sequestration, and As efflux are important physiological activities involved in As hyperaccumulation in P. vittata. Among related 19 genes, PHT, TIP, ACR3, ACR2 and HAC family genes play essential roles in arsenate (AsⅤ) transport, arsenite (AsⅢ) transport, vacuole sequestration of AsⅢ, and the reduction of AsⅤ to AsⅢ, respectively. Gene ontology enrichment analysis indicated it is necessary to further explore genes that can bind to related ions, with transport activity, or with function of transmembrane transport. Phylogeny analysis results implied ACR2, HAC and ACR3 family genes with rapid evolutionary rate may be the decisive factors for P. vittata as an As hyperaccumulator. A deeper understanding of the As hyperaccumulation network and key gene components could provide useful tools for further bio-engineered phytoremediation.


Assuntos
Arsênio , Pteris , Filogenia , Pteris/genética , Biologia Molecular , Fenômenos Fisiológicos Vegetais
10.
J Hazard Mater ; 460: 132484, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37688872

RESUMO

In contaminated soils, arsenic (As) often co-exists with copper (Cu). However, its effects on As accumulation and the related mechanisms in As-hyperaccumulator Pteris vittata remain unclear. In this study, P. vittata plants were exposed to 50 µM As and/or 50 µM Cu under hydroponics to investigate the effects of Cu on plant growth and As accumulation, as well as gene expression related to arsenic uptake (P transporters), reduction (arsenate reductases), and translocation and sequestration (arsenite antiporters). After 14 d of growth and compared to the As treatment, the As concentration in P. vittata fronds increased by 1.4-times from 793 to 1131 mg·kg-1 and its biomass increased by 1.2-fold from 18.0 to 21.1 g·plant-1 in the As+Cu treatment. Copper-enhanced As accumulation was probably due to upregulated gene expressions related to As-metabolisms including As uptake (1.9-fold in P transporter PvPht1;3), translocation (2.1-2.4 fold in arsenite antiporters PvACR3/3;2) and sequestration (1.5-2.0 fold in arsenite antiporters PvACR3;1/3;3). Our results suggest that moderate amount of Cu can help to increase the As accumulation efficiency in P. vittata, which has implication in its application in phytoremedation in As and Cu co-contaminated soils.


Assuntos
Arsênio , Arsenitos , Pteris , Cobre , Arsênio/toxicidade , Pteris/genética , Proteínas de Membrana Transportadoras , Antiporters , Expressão Gênica , Solo
11.
Metallomics ; 15(8)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528060

RESUMO

Pityrogramma calomelanos and Pteris vittata are cosmopolitan fern species that are the strongest known arsenic (As) hyperaccumulators, with potential to be used in the remediation of arsenic-contaminated mine tailings. However, it is currently unknown what chemical processes lead to uptake of As in the roots. This information is critical to identify As-contaminated soils that can be phytoremediated, or to improve the phytoremediation process. Therefore, this study identified the in situ distribution of As in the root interface leading to uptake in P. calomelanos and P. vittata, using a combination of synchrotron micro-X-ray fluorescence spectroscopy and X-ray absorption near-edge structure imaging to reveal chemical transformations of arsenic in the rhizosphere-root interface of these ferns. The dominant form of As in soils was As(V), even in As(III)-dosed soils, and the major form in P. calomelanos roots was As(III), while it was As(V) in P. vittata roots. Arsenic was cycled from roots growing in As-rich soil to roots growing in control soil. This study combined novel analytical approaches to elucidate the As cycling in the rhizosphere and roots enabling insights for further application in phytotechnologies to remediated As-polluted soils.


Assuntos
Arsênio , Gleiquênias , Pteris , Poluentes do Solo , Arsênio/análise , Rizosfera , Poluentes do Solo/análise , Gleiquênias/química , Biodegradação Ambiental , Solo/química
12.
Toxicon ; 233: 107260, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37619743

RESUMO

The toxic effect of ferns of the genus of Pteris in bovines is caused by ptaquiloside, the main carcinogenic toxin. In this study, ten species of Pteris fern in different phenologic stages and plant conditions were collected in northwest Argentina. The phytochemical analysis showed the presence of Pt in the recent collected samples (adults and young plants) but not in the herbarium specimens. The results show a great variation of Pt concentration that depends on the phenologic stage, plant condition, and collection site. Pt was measured in 6-4326 µg/g concentration, with a mean concentration of 644 µg/g. No Pt was detected in eight species of Pteris collected from herbarium samples; such results may be a false negative. It is important to notice that analysis of herbarium samples for Pt may not be a reliable method to determine its presence. It is important to further understand the potential toxicity caused by these ferns because of their effect on animals, public health, and the environment.


Assuntos
Gleiquênias , Pteris , Sesquiterpenos , Animais , Bovinos , Argentina , Indanos/toxicidade
13.
Chemosphere ; 340: 139812, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37597630

RESUMO

The use of arsenic (As) for various industrial and agricultural applications has led to worldwide environmental contamination. Phytoremediation using hyperaccumulators is a sustainable soil As mitigation strategy. Microbial processes play an important role in the tolerance and uptake of trace elements such as in plants. The rhizospheric and endophytic microbial communities are responsible for accelerating the mobility of trace elements around the roots and the production of plant growth-promoting compounds and enzymes. Several studies have reported that the As hyperaccumulator, Pteris vittata L. (PV) influences the microbial community in its rhizosphere and roots. Deciphering the differences in the microbiomes of hyperaccumulators and non-accumulators is crucial in understanding the mechanism of hyperaccumulation. We hypothesized that there are significant differences in the microbiome of roots, rhizospheric soil, and bulk soil between the hyperaccumulator PV and a non-accumulator of the same genus, Pteris ensiformis Burm. (PE), and that the differential recruitment of bacterial communities provides PV with an advantage in As contaminated soil. We compared root endophytic, rhizospheric, and bulk soil microbial communities between PV and PE species grown in As-contaminated soil in a greenhouse setting. There was a significant difference (p < 0.001) in the microbiome of the three compartments between the ferns. Differential abundance analysis showed 328 Amplicon Sequence Variants (ASVs) enriched in PV compared to 172 in PE. The bulk and rhizospheric soil of both ferns were abundant in As-resistant genera. However, As-tolerant root endophytic genera were present in PV but absent in PE. Our findings show that there is a difference between the bacterial composition of an As hyperaccumulator and a non-accumulator species grown in As-contaminated soil. These differences need to be further explored to develop strategies for improving the efficiency of metal uptake in plants growing in As polluted soil.


Assuntos
Arsênio , Gleiquênias , Pteris , Oligoelementos , Agricultura , Solo
14.
Sci Total Environ ; 896: 165232, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37392892

RESUMO

Arsenic (As) is a toxic metalloid, elevated levels of which in soils are becoming a major global environmental issue that poses potential health risks to humans. Pteris vittata, the first known As hyperaccumulator, has been successfully used to remediate As-polluted soils. Understanding why and how P. vittata hyperaccumulates As is the core theoretical basis of As phytoremediation technology. In this review, we highlight the beneficial effects of As in P. vittata, including growth promotion, elemental defense, and other potential benefits. The stimulated growth of P. vittata induced by As can be defined as As hormesis, but differs from that in non-hyperaccumulators in some aspects. Furthermore, the As coping mechanisms of P. vittata, including As uptake, reduction, efflux, translocation, and sequestration/detoxification are discussed. We hypothesize that P. vittata has evolved strong As uptake and translocation capacities to obtain beneficial effects from As, which gradually leads to As accumulation. During this process, P. vittata has developed a strong As vacuolar sequestration ability to detoxify overloaded As, which enables it to accumulate extremely high As concentrations in its fronds. This review also provides insights into several important research gaps that need to be addressed to advance our understanding of As hyperaccumulation in P. vittata from the perspective of the benefits of As.


Assuntos
Arsênio , Pteris , Poluentes do Solo , Humanos , Arsênio/análise , Pteris/metabolismo , Poluentes do Solo/análise , Biodegradação Ambiental , Solo , Raízes de Plantas/metabolismo
15.
Sci Total Environ ; 899: 165654, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37478955

RESUMO

Phytoextraction is a low-cost and eco-friendly method for removing pollutants, such as arsenic (As), from contaminated soil. One of the most studied As hyperaccumulators for soil remediation include Pteris vittata. Although phytoextraction using plant-assisted microbes has been considered a promising soil remediation method, microbial harnessing has not been achieved due to the complex and difficult to understand interactions between microbes and plants. This problem can possibly be addressed with a multi-omics approach using a Bayesian network. However, limited studies have used Bayesian networks to analyze plant-microbe interactions. Therefore, to understand this complex interaction and to facilitate efficient As phytoextraction using microbial inoculants, we conducted field cultivation experiments at two sites with different total As contents (62 and 8.9 mg/kg). Metabolome and microbiome data were obtained from rhizosphere soil samples using nuclear magnetic resonance and high-throughput sequencing, respectively, and a Bayesian network was applied to the obtained multi-omics data. In a highly As-contaminated site, inoculation with Pseudomonas sp. strain m307, which is an arsenite-oxidizing microbe having multiple copies of the arsenite oxidase gene, increased As concentration in the shoots of P. vittata to 157.5 mg/kg under this treatment; this was 1.5-fold higher than that of the other treatments. Bayesian network demonstrated that strain m307 contributed to As accumulation in P. vittata. Furthermore, the network showed that microbes belonging to the MND1 order positively contributed to As accumulation in P. vittata. Based on the ecological characteristics of MND1, it was suggested that the rhizosphere of P. vittata inoculated with strain m307 was under low-nitrogen conditions. Strain m307 may have induced low-nitrogen conditions via arsenite oxidation accompanied by nitrate reduction, potentially resulting in microbial iron reduction or the prevention of microbial iron oxidation. These conditions may have enhanced the bioavailability of arsenate, leading to increased As accumulation in P. vittata.


Assuntos
Arsênio , Arsenitos , Pteris , Poluentes do Solo , Arsênio/análise , Teorema de Bayes , Poluentes do Solo/análise , Biodegradação Ambiental , Ferro , Solo
16.
J Hazard Mater ; 458: 132034, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37453355

RESUMO

Soil contamination by arsenic (As) poses potential health risks to humans. As-hyperaccumulator P. vittata has been used in As-contaminated soils for phytoremediation. Clarifying the mechanisms of its As-hyperaccumulation is critical to enhance its efficiency in phytoremediation. Here, based on transcriptome analysis, we determined the concentration-dependent patterns of As-related gene families by comparing As-hyperaccumulator P. vittata and non-hyperaccumulator P. ensiformis after exposing to 20 µM arsenate (AsV). As expected, arsenic induced more stress in P. ensiformis than P. vittata. Based on gene ontology, differences in transporter activity are probably responsible for their differential As accumulation. Though As exposure induced expression of phosphate transporter PvPht1;4 for AsV absorption in both plants, stronger AsV reduction, AsIII transport, and AsIII-GSH complexation were found in P. ensiformis roots. Unlike P. ensiformis, As metabolism processes occurred mainly in P. vittata fronds. Notably, tonoplast-localized ACR3s were only present in P. vittata, making it more effective in sequestrating AsIII into frond vacuoles. Further, vesicle As transformation via PvGAPC1 (glyceraldehyde 3-phosphate dehydrogenase), PvOCT4 (organic cation transporter 4), and PvGSTF1 (glutathione S-transferase) contributed little to As-hyperaccumulation. This study provides information on critical genes responsible for As-hyperaccumulation by P. vittata, which can be applied to construct As-hyperaccumulating plants by genetic engineering to enhance their phytoremediation efficiency in As-contaminated soils.


Assuntos
Arsênio , Pteris , Poluentes do Solo , Humanos , Arsênio/metabolismo , Pteris/metabolismo , Biodegradação Ambiental , Raízes de Plantas/metabolismo , Perfilação da Expressão Gênica , Solo , Poluentes do Solo/metabolismo
17.
Environ Sci Pollut Res Int ; 30(36): 85198-85209, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37380855

RESUMO

Chinese brake fern (Pteris vittata) can increase tolerance to arsenic (As) and cadmium (Cd) toxicity by regulating rhizosphere microbial diversity. However, effects of combined As-Cd stress on microbial diversity and plant uptake and transport remain poorly understood. Therefore, effects of different concentrations of As and Cd on Pteris vittata (P. vittata) metal uptake and translocation and rhizosphere microbial diversity were examined in a pot experiment. The results indicated that As primarily accumulated aboveground in P. vittata (bioconcentration factor (BCF) ≤ 51.3; translocation factor (TF) ≈ 4), whereas Cd primarily accumulated belowground (BCF ≤ 39.1; TF < 1). Under single As, single Cd, and As-Cd combined stress, the most dominant bacteria and fungi were Burkholderia-Caballeronia-P (6.62-27.92%) and Boeremia (4.61-30.42%), Massilia (8.07-11.51%) and Trichoderma (4.47-22.20%), and Bradyrhizobium (2.24-10.38%) and Boeremia (3.16-45.69%), respectively, and their abundance ratios had a significant impact on the efficiency of P. vittata for As and Cd accumulation. However, with increasing As and Cd concentrations, abundances of plant pathogenic bacteria such as Fusarium and Chaetomium (the highest abundances were 18.08% and 23.72%, respectively) increased, indicating that As and Cd concentrations reduced P. vittata resistance to pathogens. At high soil concentrations of As-Cd, although plant As and Cd contents increased and microbial diversity was highest, enrichment efficiency and transportability of As and Cd decreased substantially. Therefore, pollution intensity should be considered when evaluating P. vittata suitability for phytoremediation of combined As-Cd contaminated soils.


Assuntos
Arsênio , Cádmio , Metais , Pteris , Poluentes do Solo , Arsênio/análise , Arsênio/metabolismo , Biodegradação Ambiental , Cádmio/análise , Cádmio/metabolismo , Metais/análise , Metais/metabolismo , Pteris/química , Pteris/metabolismo , Rizosfera , Poluentes do Solo/análise , Poluentes do Solo/metabolismo
18.
Sci Total Environ ; 893: 164705, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37290657

RESUMO

Pteris vittata L. (PV), an arsenic (As) hyperaccumulator, has a potential to extract As from As-polluted soils. Since available As in soils can be taken up by PV, As fraction variation associated rhizosphere environmental characteristics caused by municipal sewage sludge compost (MSSC) could provide possible to strengthen As phytoextraction by PV. In this study, the mechanism of phytoextraction of PV aided by MSSC was revealed from aspect of environmental characteristics of rhizosphere soils and physiological properties of PV. The effect of MSSC on available As in soils was investigated by soil incubation experiment. Furthermore, the influences of MSSC on enzymes activities, communities of soil bacteria and fungi, As concentrations, and As fraction in rhizosphere soils of PV were explored, and then the biomass and As accumulation of PV were examined by greenhouse pot experiments. After 90 days, available As in soil incubation experiment significantly increased by 32.63 %, 43.05 %, and 36.84 % under 2 %, 5 %, and 10 % treatment, respectively, compared with control treatment. Moreover, As concentrations in rhizosphere soils of PV under 2 %, 5 %, and 10 % treatment decreased by 4.62 %, 8.68 %, and 7.47 %, respectively, compared with control treatment. The available nutrients and enzyme activities in rhizosphere soils of PVs were improved under the MSSC treatment. Affected by MSSC, the dominant phylum and genus for both bacterial and fungal communities didn't change, but their relative abundance increased. Additionally, MSSC significantly increased biomass of PV with corresponding mean ranging from 2.82 to 3.42 g in shoot and 1.82 to 1.89 g in root, respectively. And the concentrations of As in shoot and root of PV treated by MSSC increased by 29.04 %-144.7 % and 26.34 %-81.78 %, respectively, in relative to control. The results of this study provided a basis for MSSC-strengthened phytoremediation for As-polluted soils.


Assuntos
Arsênio , Compostagem , Pteris , Poluentes do Solo , Arsênio/análise , Esgotos , Poluentes do Solo/análise , Biodegradação Ambiental , Solo , Bactérias
19.
J Hazard Mater ; 455: 131607, 2023 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-37182466

RESUMO

The behaviors of antimony (Sb) and arsenic (As) in plants are different, though they are chemical analogs. Here, we examined the Sb uptake and speciation in two As-hyperaccumulators P. vittata and P. cretica, which were exposed to 0.5 or 5 mg L-1 antimonate (SbV) or antimonite (SbIII) under hydroponics for 7 d. Both plants grew better under Sb exposure, especially for P. cretica. The biomass of P. cretica roots increased by 29-46% after exposing to SbV, possibly due to increased S. Further, the Sb content in P. vittata was 17-93% greater than P. cretica, with 2-3 times more SbIII than SbV in both plants and > 92% Sb being concentrated in the roots, showing limited translocation. Under SbV exposure, SbV was dominant in P. vittata roots at 86-94%, while SbIII was predominant in P. cretica roots at 36-95%. P. cretica's stronger reducing ability than P. vittata may be due to arsenate reductases HAC1 and ACR2, which were upregulated in both plants. In short, while effective in Sb accumulation, it is mostly concentrated in the roots for both plants. The differences in their accumulation and speciation may help to better understand Sb behaviors in other plants.


Assuntos
Arsênio , Pteris , Poluentes do Solo , Arsênio/toxicidade , Arsênio/análise , Antimônio , Poluentes do Solo/análise , Raízes de Plantas/química , Biodegradação Ambiental
20.
Ecotoxicol Environ Saf ; 259: 115004, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37196521

RESUMO

Intercropping of hyperaccumulators with crops has emerged as a promising method for remediating arsenic (As)-contaminated soil in agroecosystems. However, the response of intercropping hyperaccumulators with different types of legume plants to diverse gradients of As-contaminated soil remains poorly understood. In this study, we assessed the response of plant growth and accumulation of an As hyperaccumulator (Pteris vittata L.) intercropped with two legume plants to three gradients of As-contaminated soil. Results indicated that soil As concentration had a substantial effect on the As uptake by plants. P. vittata growing in slightly As-contaminated soil (80 mg kg-1) exhibited higher As accumulation (1.52-5.49 folds) than those in higher As-contaminated soil (117 and 148 mg kg-1), owing to the lower soil pH in high As-contaminated soil. Intercropping with Sesbania cannabina L. increased As accumulation in P. vittata by 19.3%- 53.9% but decreased in intercropping with Cassia tora L. This finding was attributed to S. cannabina providing more NO3--N to P. vittata to support its growth, and higher resistance to As. The decreased rhizosphere pH in the intercropping treatment also resulted in the increased As accumulation in P. vittata. Meanwhile, the As concentrations in the seeds of the two legume plants met the national food standards(<0.5 mg kg-1). Therefore, the intercropping P. vittata with S. cannabina is a highly effective intercropping system in slightly As-contaminated soil and provides a potent method for As phytoremediation.


Assuntos
Arsênio , Fabaceae , Pteris , Poluentes do Solo , Arsênio/análise , Solo , Poluentes do Solo/análise , Biodegradação Ambiental , Verduras
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...